Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → PHYSIK


ASTRO/309: 1,2 Millionen Galaxien in drei Dimensionen (MPG)


Max-Planck-Gesellschaft - 14. Juli 2016

1,2 Millionen Galaxien in drei Dimensionen

Mit einer neuen Karte wollen Astronomen den dunklen Seiten des Universums auf die Spur kommen


Was hat es mit der Dunklen Energie auf sich? Welche Eigenschaften besitzt sie? Diese Fragen zählen zu den heißen Themen der Astronomie. Einen wichtigen Beitrag zur Erforschung der geheimnisvollen Kraft liefert jetzt die bisher größte dreidimensionale Karte des Universums: Sie enthält 1,2 Millionen Galaxien in einem Volumen von 650 Milliarden Kubiklichtjahren. Hunderte Wissenschaftler - darunter auch aus den Max-Planck-Instituten für Astrophysik und für extraterrestrische Physik - haben diese Karte für präzise Messungen der großen Unbekannten genutzt. Die Forscher fanden eine sehr gute Übereinstimmung mit dem kosmologischen Standardmodell und bestätigten, dass die Dunkle Energie mit einer kosmologischen Konstante konsistent ist.


© Daniel Eisenstein und SDSS-III

Galaxien wie Sand am Meer: Dies ist ein Schnitt durch die Karte der großräumigen Struktur des Universums aus dem Sloan Digital Sky Survey und seinem Unterprogramm, dem Baryon Oscillation Spectroscopic Survey (BOSS). Jeder Punkt in diesem Bild zeigt die Position einer Galaxie vor sechs Milliarden Jahren. Das Bild umfasst etwa 1/20 des Himmels - einen Ausschnitt des Weltalls, der sechs Milliarden Lichtjahre breit, 4,5 Milliarden Lichtjahre hoch und 500 Millionen Lichtjahre dick ist. Die Farbe ist ein Maß für die Entfernung von der Erde, von gelb für Galaxien auf der uns zugewandten Seite der Scheibe bis zu lila auf der weiter entfernten Seite. Galaxien klumpen, sie zeigen große Haufen und Hohlräume dazwischen. Diese blasenförmige Struktur wurde bereits im ersten Bruchteil einer Sekunde nach dem Urknall angelegt. Das Bild enthält 48.741 Galaxien, etwa drei Prozent des gesamten Katalogs. Graue Flecken sind kleine Regionen ohne Daten.
© Daniel Eisenstein und SDSS-III

"Zehn Jahre lang haben wir Messungen von 1,2 Millionen Galaxien über ein Viertel des Himmels hinweg gesammelt, um damit die Struktur des Universums in einem Volumen von 650 Milliarden Kubiklichtjahren zu kartieren", sagt Jeremy Tinker von der New York University, einer der Leiter des Projekts. Dem Team gehörten Hunderte von Wissenschaftlern aus dem Sloan Digital Sky Survey III (SDSS-III) an.

Die Beobachtungen waren Teil des Baryon Oscillation Spectroscopic Survey (BOSS). Die dabei erstellte Karte ist vom ständigen Tauziehen zwischen der unbekannten Dunklen Materie und der ebenso geheimnisvollen Dunklen Energie geprägt. Sie ermöglicht es den Astronomen, die Ausdehnungsrate des Universums zu vermessen, indem sich die Größe der sogenannten baryonischen akustischen Oszillationen (BAO) in der dimensionalen Verteilung der Galaxien bestimmen lässt.

Denn das sehr junge All war bis zu einem Alter von etwa 400.000 Jahren nach dem Urknall von Schallwellen durchzogen; danach "froren" diese in der Materieverteilung des Universums "ein" und hinterließen ein charakteristisches Muster. Als Folge davon sind Galaxien bevorzugt durch einen ganz bestimmten Abstand voneinander getrennt, der als BAO-Skala bezeichnet wird. Die ursprüngliche Größe dieser BAO-Skala ließ sich aus Beobachtungen des kosmischen Mikrowellenhintergrunds sehr genau bestimmen.

Ariel Sanchez vom Max-Planck-Institut für extraterrestrische Physik in Garching leitete die Arbeiten, um den genauen Anteil an Dunkler Materie und Dunkler Energie auf Grundlage der BOSS-Daten abzuschätzen. "Wenn wir die akustische Skala im Lauf der kosmischen Geschichte messen, gibt uns das einen Maßstab an die Hand, mit dem wir direkt die Expansionsrate des Weltalls bestimmen können", sagt Sanchez. So ließen sich die subtilen Auswirkungen, welche die BAO auf die Verteilung der Galaxien haben, über eine Zeitspanne von zwei bis sieben Milliarden Jahren zurückverfolgen.

Für die sehr genauen Messungen mussten die Daten allerdings auch sorgfältig analysiert werden. Insbesondere stellte die Bestimmung der Entfernungen zu den Galaxien eine große Herausforderung dar. Diese wird aus den Spektren abgeleitet. Dabei ist das Licht der Milchstraßensysteme in den roten Bereich verschoben, weil sie sich von uns entfernen. Diese sogenannte Rotverschiebung hängt unmittelbar mit dem Abstand zusammen: Je weiter eine Galaxie von uns entfernt ist, desto schneller flieht sie vor uns.


© Jeremy Tinker und SDSS-III

Das All in drei Dimensionen: Das Rechteck links zeigt einen Ausschnitt von 1000 Quadrat-Grad am Himmel, der fast 120.000 Galaxien enthält, etwa zehn Prozent des gesamten BOSS-Katalogs. Die spektroskopischen Messungen jeder Galaxie - die Punkte in diesem Ausschnitt - machen aus dem zweidimensionalen Bild eine dreidimensionale Karte, die uns den Blick sieben Milliarden Jahre in die Vergangenheit öffnet. Die helleren Regionen in dieser Karte entsprechen Bereichen des Universums mit mehr Galaxien und damit mehr Dunkler Materie. Die zusätzliche Materie in diesen Regionen erzeugt ein Übermaß an Anziehung, was diese Karte zu einem Test der Einstein'schen Gravitationstheorie macht.
© Jeremy Tinker und SDSS-III

"Daneben führen die Galaxien aber auch Eigenbewegungen aus. Und deren Geschwindigkeitskomponente entlang der Sichtlinie bewirkt eine Verzerrung der Rotverschiebungen", sagt Shun Saito vom Max-Planck-Institut für Astrophysik, der ausgeklügelte Modelle zur BOSS-Datenanalyse lieferte.

Wegen des genannten Effekts ist die Verteilung der Galaxien richtungsabhängig (anisotrop), weil die Sichtlinie jetzt als Richtung im Raum ausgezeichnet ist. Denn nur diese Richtung wird zur Entfernungsbestimmung herangezogen. Das daraus resultierende charakteristische Muster erlaubt es den Astronomen, die Eigengeschwindigkeiten der Galaxien zu messen.

Diese Eigengeschwindigkeiten wiederum werden ausschließlich von der Gravitation beeinflusst. Die Messung einer solchen Geschwindigkeit erlaubt daher Rückschlüsse auf die hinter der Gravitation stehende Theorie. "So können wir abschätzen, in welchem Umfang Einsteins allgemeine Relativitätstheorie auch auf kosmologischen Skalen korrekt ist", sagt Shun Saito. Um die Daten richtig zu interpretieren, entwickelten die Forscher ein verfeinertes Modell, das die Galaxienverteilung beschreibt.

Für seine Doktorarbeit verfolgte ein Wissenschaftler am Max-Planck-Institut für extraterrestrische Physik einen weiteren interessanten Ansatz: Salvador Salazar verwendete bei der Datenanalyse die Winkelpositionen der Galaxien am Himmel anstatt der physischen dreidimensionalen Positionen. "Diese Methode kommt allein mit Beobachtungsgrößen aus", sagt Salazar. "Wir machen keine vorherigen Annahmen über das kosmologische Modell."

Die an dem Projekt beteiligten Forschergruppen verwendeten leicht unterschiedliche Modelle und Methoden, um den riesigen BOSS-Datensatz zu analysieren. Die Daten zeigen, dass die Dunkle Energie, welche die kosmische Expansion antreibt, innerhalb eines Fehlers von nur fünf Prozent mit einer kosmologischen Konstante konsistent ist.

Diese von Albert Einstein eingeführte Konstante, Lambda genannt, beschreibt jene Größe, die der Gravitationskraft der Materie entgegenwirkt. Darüber hinaus stehen alle Ergebnisse mit dem kosmologischen Standardmodell in Einklang, das mit sechs Parametern die Entwicklung des Weltalls seit dem Urknall beschreibt.

Insbesondere zeigt die Karte auch die unverwechselbare Signatur der kohärenten Bewegung von Galaxien hin zu Regionen des Universums mit mehr Materie aufgrund der massebedingten Anziehungskraft. Und: Die beobachtete Menge der einfallenden Materie entspricht genau den Vorhersagen der allgemeinen Relativitätstheorie. Dies stützt die These, dass die Beschleunigung der Expansionsrate durch ein Phänomen wie die Dunkle Energie angetrieben wird und nicht durch eine Änderung der Gravitationstheorie.

HAE/HOR


Originalpublikationen

Jan Niklas Grieb et al.
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample
http://arxiv.org/abs/1607.03143

Salvadro Salazar-Albornoz et al.
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Angular clustering tomography and its cosmological implications
http://arxiv.org/abs/1607.03144

Ariel Sanchez et al.
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions
http://arxiv.org/abs/1607.03146

Ariel Sanchez et al.
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the configuration-space clustering wedges
http://arxiv.org/abs/1607.03147

Florian Beutler et al.
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Anisotropic galaxy clustering in Fourier-space
http://arxiv.org/abs/1607.03150

*

Quelle:
MPG - Presseinformation vom 14. Juli 2016
Herausgeber:
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Referat für Presse- und Öffentlichkeitsarbeit
Hofgartenstraße 8, 80539 München
Telefon: 089/21 08-0, Fax: 089/21 08-12 76
E-Mail: presse@gv.mpg.de
Internet: www.mpg.de


veröffentlicht im Schattenblick zum 20. Juli 2016

Zur Tagesausgabe / Zum Seitenanfang