Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → BOTANIK

FORSCHUNG/351: Stickstoff-Fixierung - Spontane Knöllchen im Wurzelwerk (idw)


Ludwig-Maximilians-Universität München - 26.11.2014

Stickstoff-Fixierung - Spontane Knöllchen im Wurzelwerk



In den meisten terrestrischen Ökosystemen leben Landpflanzen unter Nährstoffmangel. Deshalb werden jedes Jahr viele Millionen Tonnen Mineraldünger zur Ertragssicherung in landwirtschaftliche Systeme eingebracht. Um ihre Nährstoffversorgung zu verbessern, können Pflanzen Symbiosen mit Bakterien oder Pilzen eingehen. Die im Pflanzenreich weit verbreitete Arbuskuläre Mykorrhiza-Symbiose mit Pilzen versorgt Pflanzen mit Phosphat. Bei der Wurzelknöllchensymbiose dagegen kooperieren Pflanzen aus der Familie der Hülsenfrüchtler mit Stickstoff-fixierenden Bakterien, sogenannten Rhizobien, die sie in speziellen Wurzelknöllchen beherbergen. Der LMU-Genetiker Professor Martin Parniske konnte nun mit seinem Team zeigen, dass die Bildung von Wurzelknöllchen sogar ohne Rhizobien spontan angestoßen werden kann, wenn bestimmte Signalproteine überexprimiert werden, also in viel größerer Zahl produziert werden als es normalerweise der Fall ist.


Hülsenfrüchtler nehmen potenzielle Symbionten mithilfe bestimmter Rezeptorproteine - der Rezeptorkinasen NFR1 und NFR5 - wahr, die an der Oberfläche der Wurzelzelle sitzen und chemische Signalmoleküle der Rhizobien erkennen. Zeigt sich ein passender Partner, wird die Wurzelzelle umprogrammiert, indem eine Signalkette in Gang gesetzt wird, die zur Ausbildung der Wurzelknöllchen führt. Das Protein SYMRK, das sowohl für die Ausbildung der Arbuskulären Mykorrhiza als auch der Wurzelknöllchensymbiose essentiell ist, sitzt ebenfalls an der Oberfläche der Wurzelzellen. "Bis heute war aber unklar, ob und wie diese Rezeptoren genutzt werden können, um die Symbiose zu optimieren oder sie gar auf andere Pflanzen zu übertragen, die derzeit keinen Stickstoff fixieren können", sagt Parniske.


Signalkette spontan aktivierbar

Für ihre Untersuchungen machten sich die Wissenschaftler eine Erkenntnis aus der Krebsforschung zunutze, nach der Signalketten auch ohne die eigentlich notwendigen Stimulatoren in Gang gesetzt werden können, wenn die entsprechenden Rezeptoren an der Zelloberfläche überexprimiert werden. "Um zu untersuchen, ob sich dieses Prinzip auch auf pflanzliche Rezeptorkinasen übertragen lässt, haben wir transgene Wurzeln der Modellpflanze Lotus japonicus hergestellt, die NFR1, NFR5 oder SYMRK überexprimieren", erklärt Parniske. "Anschließend haben wir untersucht, ob in diesen Wurzeln spontan die Bildung von Wurzelknöllchen angestoßen wird".

Tatsächlich initiierte sowohl die Überexpression von SYMRK als auch die von NFR1 oder NFR5 die Bildung von Wurzelknöllchen, auch wenn keine Rhizobien oder deren Signalmoleküle vorhanden waren. Darüber hinaus führte die Überexpression von SYMRK, nicht aber die von NFR1 oder NFR5, zur Aktivierung von Genen, die speziell für die Symbiose mit Mykorrhizapilzen angeschaltet werden. "Diese Ergebnisse zeigen, dass wir durch Überexpression von Rezeptorkinasen die darunterliegenden Signalketten ohne den sonst nötigen Stimulus spezifisch ansteuern und aktivieren können", sagt Parniske.


Hohes Anwendungspotenzial

Wurzelknöllchensymbiose und Arbuskuläre Mykorrhiza greifen also auf ein gemeinsames genetisches Programm zurück. Zu einem frühen Zeitpunkt der Signalkette trennen sich die Wege aber und die Rezeptorkinasen stellen die Weichen in Richtung Wurzelknöllchensymbiose. "Da auch viele andere genetische Programme von Pflanzen durch Rezeptorkinasen gesteuert werden, hat deren spontane Aktivierbarkeit ein breites Anwendungspotenzial", betont Parniske. "Insbesondere könnten unsere Ergebnisse einen wichtigen Beitrag dafür leisten, die Knöllchensymbiose auf Pflanzen zu übertragen, die ursprünglich keine Verbindung mit Stickstoff-fixierenden Bakterien eingehen können, wie etwa Getreide oder andere wirtschaftlich wichtige Pflanzen. Dies hätte eine signifikante Einsparung von teurem Stickstoffdünger zur Folge, der derzeit durch das energieaufwendige Haber-Bosch Verfahren hergestellt wird." (eLIFE 2014)  göd


Publikation:
Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases
Martina Ried, Meritxell Antolín-Llovera and Martin Parniske
Tracking no: 03-07-2014-RA-eLife-03891R3

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution114

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Ludwig-Maximilians-Universität München, Luise Dirscherl, 26.11.2014
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 28. November 2014