Schattenblick →INFOPOOL →MEDIZIN → KRANKHEIT

FORSCHUNG/467: Membranprotein könnte neues Ziel für Krebsmedikamente sein - Calcium-Sicherheitsventil für Zellen (idw)


Technische Universität München - 27.06.2014

Membranprotein könnte neues Ziel für Krebsmedikamente sein

Ein Calcium-Sicherheitsventil für Zellen



Manchmal muss eine Zelle sterben - beispielsweise, wenn ihre Arbeit getan ist oder sie so geschädigt ist, dass sie eine Gefahr für den restlichen Organismus darstellt. Zellen, bei denen der Mechanismus des "programmierten Zelltods" nicht funktioniert, bergen ein hohes Krebsrisiko. Auf der Suche nach neuen Behandlungsmöglichkeiten hat ein internationales Wissenschaftlerteam nun die genaue Struktur eines neuen Ziels für Krebsmedikamente entschlüsselt: ein Membranprotein, das den Calcium-Spiegel in der Zelle reguliert.

Mit Hilfe von Röntgenstrahlung der Synchrotron-Quelle des Brookhaven National Laboratory (NSLS) entschlüsselten Wissenschaftler des New Yorker Konsortiums für Membranprotein-Strukturen (NYCOMPS), zu dem auch Forscher der Technischen Universität München (TUM) gehören, die dreidimensionale Struktur eines Membranproteins der "Trans Bax Inhibitor Motiv" (TMBIM)-Familie. Wie ein Sicherheitsventil kann es den Calcium-Spiegel in der Zelle absenken.

"Eine Erhöhung der Calcium-Konzentration ist ein Schlüsselsignal, das den programmierten Zelltod auslösen kann", erklärt Wayne Hendrickson, Professor für Biochemie und Biophysik an der Columbia University und Direktor des NYCOMPS Konsortiums. "Unsere Studie zeigt, wie dieses Protein in die zelluläre Membran eingebettet ist und als molekulares Sicherheitsventil den Calcium-Spiegel stabil hält. Arzneimittel, die dieses Protein hemmen, würden den programmierten Zelltod fördern. Dies könnte eine vielversprechende Strategie für die Bekämpfung von Krebserkrankungen sein, bei denen solche Proteine gehäuft auftreten."

3-D Modell für gezielte Wirkstoffsynthese

TMBIM-Proteine kommen in sechs Variationen vor. Das Protein TMBIM6 wird von den Zellen verschiedener Krebsarten, wie Prostata-, Brust-, Gliom-, Gebärmutter-, Eierstock- und Lungenkrebs verstärkt hergestellt. Das lässt darauf schließen, dass die Krebszellen die Calcium regulierende Funktion des Proteins gezielt nutzen, um dem programmierten Zelltod zu entgehen.

Da die Struktur der menschlichen Trans Bax Inhibitor-Motiv-Membranproteine bisher nicht bestimmt werden konnte, identifizierten Wissenschaftler im Labor von Burkhard Rost, Professor für Bioinformatik und Computergestützte Biologie an der TUM und Leiter der Bioinformatik des NYCOMPS Konsortiums, mittels Datenanalyse mehr als 50 bakterielle Proteine, die dem menschlichen TMBIM-Protein entsprechen.

Zehn dieser Proteine konnten die Wissenschaftler des Teams mit Hilfe von E. coli Bakterien herstellen, fünf davon in ausreichender Menge isolieren. Bei drei Proteinen gelang es, Kristalle zu züchten, und von einem Protein aus dem Bakterium Bacillus subtilis, konnte die genaue Struktur bestimmt werden. "Tatsächlich ist schon das ein großer Glücksfall", sagt Edda Kloppmann, die die Datenanalyse durchführte. "Transmembranproteine sind sehr schwierig herzustellen und zu kristallisieren, da man in jedem Schritt zur Strukturbestimmung ihr Membran-ähnliches Umfeld aufrechterhalten muss."

"Unsere Arbeit mit der bakteriellen Version dieses Proteins hat uns ermöglicht, ein dreidimensionales Modell zu konstruieren, das als Grundlage für die gezielte Herstellung möglicher Inhibitormoleküle verwendet werden kann", sagt Liu Qun, Wissenschaftler der Synchrotron-Quelle des Brookhaven National Laboratory.

Die aus den Röntgendaten errechnete dreidimensionale Darstellung zeigt eine neuartige Struktur, bestehend aus einer zentralen Helix, umgeben von zwei Dreifach-Helix-Sandwiches, die die Membran durchqueren. Abhängig vom Säuregehalt oder pH-Wert kann der Mittelabschnitt eine offene oder geschlossene Konformation annehmen.

Bei für biologische Zellen typischen pH-Werten liegen etwa gleich viele Proteine in offener und geschlossener Konformation vor. Dies führt einem permanenten, leichten Calciumverlust durch die Membran. Zusammen mit der Aktivität anderer Proteine, die Calcium in die Zelle pumpen, hält dies die Calcium-Konzentration in einem für die Zelle günstigen Bereich.

Studien des Wissenschaftlerteams zeigen im Detail, wie das TMBIM-Protein auf Veränderungen des pH-Werts reagiert. "Der nächste Schritt wird sein, die Kristallstrukturen der menschlichen TMBIM-Proteine zu lösen, um das Design möglicher Inhibitor-Wirkstoffe zu verfeinern", sagt Liu.

Die Forschungsarbeiten wurden unterstützt mit Mitteln der National Institutes of Health (NIH) und des New York Structural Biology Center. Die Messungen fanden an der National Synchrotron Light Source (NSLS) am Brookhaven National Laboratory statt. An der Forschungsarbeit wirkten mit: Wissenschaftler der Technischen Universität München, des Brookhaven National Laboratory, der Columbia University, der New York University, des Baylor College of Medicine und des New York Structural Biology Center.


Publikation:
Structural basis for a pH-sensitive calcium leak across membranes Yanqi Chang, Renato Bruni, Brian Kloss, Zahra Assur, Edda Kloppmann, Burkhard Rost, Wayne A. Hendrickson, Qun Liu; Science 344, 1131 (2014) - DOI: 10.1126/science.1252043

Kontakt:
Prof. Dr. Burkhard Rost
Technische Universität München
Institut für Informatik
Boltzmannstr. 3, 85748 Garching, Germany
E-Mail: assistant@rostlab.org

Weitere Informationen finden Sie unter
http://www.rostlab.org
http://www.nycomps.org

Zu dieser Mitteilung finden Sie Bilder unter:
http://idw-online.de/de/image239084
Innere Struktur des Calcium-Ventils

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution73

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Technische Universität München, Dr. Ulrich Marsch, 27.06.2014
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 1. Juli 2014