Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

FORSCHUNG/3095: Highspeed Origami in der Zelle - Forscher klären wichtigen Mechanismus der Proteinfaltung (idw)


Max-Planck-Institut für Biochemie - 09.05.2014

Highspeed Origami in der Zelle

Forscher klären wichtigen Mechanismus der Proteinfaltung



Proteine sind für nahezu alle wichtigen Prozesse des Lebens verantwortlich. Dabei sind ihre Form und Struktur entscheidend für ihre Funktionstüchtigkeit. Forscher am Max-Planck-Institut für Biochemie (MPIB) haben jetzt eine bisher unbekannte Abfolge von Reaktionen entdeckt, die neu gebildeten Proteinen ihre korrekte Struktur verleiht. "Bei dem von uns gefundenen Mechanismus erfolgt die Faltung der Proteine, anstatt als Ganzes, in mehreren, schnellen Zwischenschritten", erläutert Manajit Hayer-Hartl, Forschungsgruppenleiterin am MPIB. "Da dieses Verfahren sehr energiesparend für die Zelle ist, werden Proteine nicht nur korrekt, sondern auch deutlich schneller als bisher angenommen gefaltet."

Proteine sind die Arbeitstiere der Zelle und für nahezu alle biologischen Funktionen verantwortlich. Sie sind unter anderem für den Stoffwechsel zuständig, übertragen Signale oder geben der Zelle ihre Form. Bevor sie allerdings ihre verschiedenen Aufgaben erfüllen können, müssen die kettenartigen Moleküle zunächst eine komplexe dreidimensionale Form annehmen. Dieser Vorgang nennt sich Proteinfaltung und ist einer der wichtigsten Prozesse in der Biologie. Denn falsch gefaltete Proteine können häufig ihre ursprüngliche Funktion nicht wahrnehmen oder gar dazu neigen, zu verklumpen. Dies wiederum kann zu schwerwiegenden Krankheiten wie Alzheimer oder Parkinson führen. Um dies zu vermeiden, helfen spezialisierte Proteine (Chaperone, engl.: Anstandsdamen) ihren Schwester-Molekülen dabei, sich in die richtige Form zu bringen.

Ein konkretes Beispiel stellen die beiden bakteriellen Chaperone GroEL und GroES dar. Zusammen bilden sie eine käfigartige Struktur, in der sie neue, noch nicht gefaltete Proteine einschließen und diesen ermöglichen, sich korrekt zu falten. Wie genau sie dies allerdings realisieren, war bisher unklar und Forschungsgegenstand des Teams um Manajit Hayer-Hartl und Ulrich Hartl am MPIB, sowie John Engen von der Northeastern University in Boston.

Aktive Beschleunigung durch bessere Energiebilanz

"Unsere Ergebnisse zeigen, dass die Chaperone nicht nur verhindern, dass die Proteine verklumpen, sondern auch, dass sie den Faltungsprozess dramatisch beschleunigen", schildert Florian Georgescauld, Wissenschaftler am MPIB. "Überraschenderweise erreichen die Chaperone dies, indem sie den Faltmechanismus verändern: Anstatt das Protein in einem großen Block auf einmal zu falten, erlangt es - wie bei einem kunstvollen Origami - in mehreren sehr schnellen Faltungsschritten seine Form." Die Forscher nehmen an, dass die Aufteilung in mehrere kleine Schritte die Reaktion energetisch günstiger macht, was wiederum die Geschwindigkeit erhöhe. So wird die Faltung innerhalb weniger Sekunden abgeschlossen, anstatt binnen mehrerer Minuten.

Die Studie zeigt zum ersten Mal, dass Chaperone nicht nur passiv als Reaktionskäfig, sondern auch aktiv als so genannter Katalysator wirken können. Die daraus resultierende, hohe Faltungsgeschwindigkeit sei biologisch besonders relevant, so die Forscher. Sie trägt dazu bei, dass Proteine schneller gefaltet als nachproduziert werden und verhindert so den Rückstau fehlerhafter Proteine und die damit verbundenen Folgen.


Originalpublikation:
F. Georgescauld, K. Popova, A. J. Gupta, A. Bracher, J. R. Engen, M. Hayer-Hartl and F. U. Hartl: GroEL/ES Chaperonin Modulates the Mechanism and Accelerates the Rate of TIM-Barrel Domain Folding. Cell, May 8, 2014. DOI: 10.1016/j.cell.2014.03.038


Kontakt:

Dr. Manajit Hayer-Hartl
Chaperonin-vermittelte Proteinfaltung
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: mhartl@biochem.mpg.de
www.biochem.mpg.de/hayer-hartl

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de


Weitere Informationen finden Sie unter

http://www.biochem.mpg.de/hayer-hartl
Webseite der Forschungsgruppe "Chaperonin vermittelte Proteinfaltung" (Manajit Hayer-Hartl)

http://www.biochem.mpg.de/news/ueber_das_institut/forschungsbereiche/strukturforschung/hayer_hartl_presse
Presseseite der Forschungsgruppe "Chaperonin vermittelte Proteinfaltung" (Manajit Hayer-Hartl)

http://www.mpg.de/7557013/proteinfaltung
Film "Grundlagen der Proteinfaltung"

http://www.mpg.de/7542949/chaperone
Film "Chaperone - Faltungshelfer der Zelle"


Zu dieser Mitteilung finden Sie Bilder unter:
http://idw-online.de/de/image234486
Der GroEL/ES Nanokäfig (weiß und blau) mit eingeschlossenem Protein Substrat (orange).

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution25

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Max-Planck-Institut für Biochemie, Anja Konschak, 09.05.2014
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 13. Mai 2014