Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

FORSCHUNG/2642: Gefangen im Tunnel - Wie Bakterien sich gegen Antibiotika wehren (idw)


Goethe-Universität Frankfurt am Main - 30.03.2012

Gefangen im Tunnel - Wie Bakterien sich gegen Antibiotika wehren



Wie ein Mini-Staubsauger wirkt eine Pumpe in der Bakterien-Membran, die eindringende Antibiotika-Moleküle wieder nach draußen befördert und das Bakterium damit gegen den Wirkstoff resistent macht. Die Details des Prozesses haben Frankfurter Wissenschaftler jetzt mit hochauflösender Röntgenspektroskopie aufgeklärt.

Multiple Antibiotika-Resistenz ist in den vergangenen Jahren zu einem ernsten medizinischen Problem geworden. Immer mehr bakterielle Krankheitserreger haben Mechanismen entwickelt, sich gegen die gängigen Antibiotika zur Wehr setzen. Hoch effizient sind beispielsweise Pumpen in der Bakterienmembran, die den Wirkstoff aus der Zelle hinaus befördern, noch bevor er die Membran durchquert hat. Biochemiker des Frankfurter Exzellenzclusters "Makromolekulare Komplexe" am Institut für Biochemie haben nun den Bauplan dieser Pumpen entschlüsselt, so dass sie deren Funktion besser verstehen. Die in den Proceedings der National Acadamy of Sciences publizierte Arbeit ist nicht nur für die Grundlagenforschung interessant, sondern könnte auch Ansatzpunkte aufzeigen, die Abwehr-Tricks der Bakterien mit neuen Wirkstoffen gezielt zu umgehen.

"Die Pumpen sind wie Mini-Staubsauger oder eher Antibiotika-Sauger", erklärt Doktorand Hi-jea Cha aus der Arbeitsgruppe von Prof. Klaas Martinus Pos. "Sie sichern das Überleben des Bakteriums, indem sie das Zellinnere von gefährlichen Substanzen frei halten". Wie diese Pumpen funktionieren, untersuchen die Forscher bereits seit einigen Jahren. Zunächst analysierten sie die Mechanik der Nanomaschine ohne Bindung an ein Antibiotikum. Mithilfe hoch auflösender Röntgenstrukturanalyse haben sie jetzt herausgefunden, wie die Pumpe die Antibiotika einfängt und aus der Zelle befördert. Das geschieht bei Bakterien mit einer doppelten Zellmembran (Gram-negativ) in der Schicht zwischen äußerer und innerer Membran.

Die Pumpe verändert ihre Gestalt in einem zyklischen Prozess. Im ersten Schritt, der jetzt im Detail sichtbar gemacht wurde, wird das Antibiotikum auf dem Weg zum Zellinneren abgefangen und an einer taschenförmigen Bindungsstelle festgehalten. "Dafür postulieren wir einen Mechanismus ähnlich einer peristaltischen Pumpe: Die Antibiotika-Moleküle werden durch einen Tunnel nach außen gequetscht wie Nahrung durch die Speiseröhre zum Magen, so dass sie nicht zurückrutschen können", so Pos. Die zweite, viel kräftigere Bindung in einer tiefen Bindungstasche verankert dann das Antibiotikum in der Pumpe. Dies bewirkt eine weitere Gestaltveränderung, welche einen weiteren Tunnel zur Außenseite öffnet und das Antibiotikum endgültig aus der Zelle entlässt.

Zwischen der ersten und zweiten Bindungstasche haben die Forscher zudem eine kleine Schleife beobachtet, die eine Schaltstelle bildet. Die Position dieser Schleife verändert sich, je nach dem ob das Antibiotikum in der ersten oder in der zweiten Tasche gebunden ist. Die genaue Funktion dieser Schleife wird zurzeit eingehend untersucht.


Publikation:
Thomas Eicher, Hi-jea Cha, Markus Seeger et al.:
Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch loop
in: PNAS early edition
www.pnas.org/cgi/doi/10.1073/pnas.1114944109.

Informationen:
Prof. Klaas Martinus Pos, Hi-jea Cha
Institut für Biochemie
Exzellenzcluster Makromolekulare Komplexe
Campus Riedberg
pos@em.uni-frankfurt.de, cha@em.uni-frankfurt.de.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation
Postfach 11 19 32
60054‍ ‍Frankfurt am Main
Redaktion: Dr. Anne Hardy
Referentin für Wissenschaftskommunikation
E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Zu dieser Mitteilung finden Sie Bilder unter:
http://idw-online.de/de/image166921
Die Antibiotikapumpe AcrB (im Hintergrund) besteht aus drei identischen Bestandteilen, die jeweils ein Stadium der peristaltischen Pumpbewegung repräsentieren (blau, gelb, rot). Durch die neue Kristallstruktur konnten die molekularen Details über die Zugänge (grün) eines Antibiotikums in die Pumpe aufgeklärt werden. Das Bild im Vordergrund zeigt, dass zwei verschiedene Bindetaschen (dargestellt als Sphären) an der Erkennung des Antibiotikums beteiligt sind. Die Taschen werden durch eine Schleife (zwischen den zwei Antibiotikamolekülen) zeitlich und räumlich koordiniert.

Die Goethe-Universität
ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die "Science City" auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution131

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Goethe-Universität Frankfurt am Main, Dr. Anne Hardy, 30.03.2012
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 3. April 2012